CNNモデルの入力画像をNumpy配列に変換して読み込ませようとするとエラーを吐いてしまいます
vgg16をファインチューニングしたCNNモデルをヒートマップとして可視化させるために、「PythonとKerasによるディープラーニング,pp.182」を参考にプログラムを作成したのですが、入力画像をNumpy配列に変換して読み込ませようとするとエラーを吐いてしまいます。以下プログラムの一部抜粋とエラー内容です。どうかご回答お願いいたします。
img = image.load_img(img_path, target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
----> 1 preds = model.predict(x)
~\Anaconda3\lib\site-packages\keras\engine\training.py in predict(self, x, batch_size, verbose, steps)
1167 batch_size=batch_size,
1168 verbose=verbose,
-> 1169 steps=steps)
1170
1171 def train_on_batch(self, x, y,
~\Anaconda3\lib\site-packages\keras\engine\training_arrays.py in predict_loop(model, f, ins, batch_size, verbose, steps)
292 ins_batch[i] = ins_batch[i].toarray()
293
--> 294 batch_outs = f(ins_batch)
295 batch_outs = to_list(batch_outs)
296 if batch_index == 0:
~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __call__(self, *args, **kwargs)
1456 ret = tf_session.TF_SessionRunCallable(self._session._session,
1457 self._handle, args,
-> 1458 run_metadata_ptr)
1459 if run_metadata:
1460 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
UnknownError: 2 root error(s) found.
(0) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
[[{{node block1_conv1_1/convolution}}]]
(1) Unknown: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
[[{{node block1_conv1_1/convolution}}]]
[[sequential_2/dense_4/Softmax/_607]]
0 successful operations.
0 derived errors ignored.