Chainerのサンプルコードについて
ChainerのサンプルコードにあるMNIST 画像データの学習を行うプログラム
https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py
を参考に自分でプログラムを書いたのですが、学習が始まって数秒のところでエラーが出てしまいます。
エラーの内容が
'int' object is not callable
これが発生しているのが、
self.trainer.run()
という部分でした。以下に全プログラムを掲載します。
main.py
from __future__ import print_function
import MultiLayerPerceptron
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
GPU = 0
UNIT = 1000
O_UNIT = 10
BACTHSIZE = 100
EPOCH = 20
OUT = 'result'
RESUME = ''
def main():
setParams = MultiLayerPerceptron.SetParams(UNIT, O_UNIT, GPU, BACTHSIZE, EPOCH, OUT, RESUME)
setParams.SetGPU()
setParams.SetOptimizer()
setParams.SetMNISTData()
setParams.SetTrainer()
setParams.SetExtension()
setParams.RunTrainer()
if __name__ == '__main__':
main()
MultiLayerPerceptron.py
# -*- coding: utf-8 -*-
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import training
from chainer.training import extensions
class MLP(chainer.Chain):
def __init__(self,n_units,n_out):
super(MLP, self).__init__(
l1=L.Linear(None,n_units),
l2=L.Linear(None,n_units),
l3=L.Linear(None,n_out),
)
def __call__(self,x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
class SetParams:
def __init__(self,unit, o_unit, gpu,batchSize,epoch,out,resume):
self.model = L.Classifier(MLP(unit, o_unit))
self.gpu = gpu
self.batchSize = batchSize
self.epoch = epoch
self.out = out
self.resume = resume
self.optimiszer = None
self.train = None
self.test = None
self.trainIter = None
self.testIter = None
self.trainer = None
#GPUの設定
def SetGPU(self):
if self.gpu >= 0:
chainer.cuda.get_device(self.gpu).use()
self.model.to_gpu()
print "Set GPU - OK"
#最適化関数の設定
def SetOptimizer(self):
self.optimizer = chainer.optimizers.Adam()
self.optimizer.setup(self.model)
print "Set Optimizer - OK"
#MNIST画像データの取得
def SetMNISTData(self):
self.train,self.test = chainer.datasets.get_mnist() #ラベル付きデータセット、1次元、データType=float32、ラベルType=int32
#ミニバッチの設定
self.trainIter = chainer.iterators.SerialIterator(self.train, self.batchSize) #繰り返し有り、順番入れ替えあり
self.testIter = chainer.iterators.SerialIterator(self.test, self.batchSize, False, False) #繰り返しなし、順番入れ替えなし
print "Set MNIST Image - OK"
def SetTrainer(self):
self.updater = training.StandardUpdater(self.trainIter, self.optimizer, device = self.gpu)
self.trainer = training.Trainer(self.updater, (self.epoch, 'epoch'), out = self.out) #***** 不明 *****
def SetExtension(self):
self.trainer.extend(extensions.Evaluator(self.testIter, self.model, self.gpu))
self.trainer.extend(extensions.dump_graph('main/loss'))
self.trainer.extend(extensions.snapshot(), trigger=(self.epoch, 'epoch'))
self.trainer.extend(extensions.LogReport())
self.trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validaton/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
self.trainer.extend(extensions.ProgressBar())
print "Set Extension - OK"
def RunTrainer(self):
if self.resume:
chainer.serializers.load_npz(self.resume, self.trainer)
self.trainer.run()