現在kerasチームが公開しているconditional GANのコードhttps://github.com/eriklindernoren/Keras-GAN/blob/master/cgan/cgan.pyを元にし,1次元データを入力とするConditional GANの実装を目指しています.そこで,Discriminatorの識別精度が100%近くになり,良いデータを生成できないという状態になってしまいました.状況を打開する心当たりがあれば,よろしくお願いします.元のコードからの変更箇所はコメントアウトで示しています.

入力データは(1087*1000)の数値データと1001列目にクラスラベル(14クラス)を記述したsam.csvです.
sam.csvの中身は,データ数が多い方がいいかと考え,14行分のデータをコピペして1087行まで増やしたものです.

元はmnistなど2次元向けのモデルに対して,1*1000の形で入力しているのが問題なのでしょうか
もしくは同じ1次元データを含んでいる入力データが問題なのでしょうか

from __future__ import print_function, division
import os
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, 
multiply
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import csv
import warnings;warnings.filterwarnings("ignore")
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning':0})
import numpy as np

class CGAN():
    def __init__(self, epochs, batch_size, sample_interval):
        # Input shape
        self.img_rows = 1 ##28から変更##
        self.img_cols = 1000 ##28から変更##
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols,self.channels)
        self.num_classes = 14 ##10から変更##
        self.latent_dim = 100

    optimizer = Adam(0.0002, 0.5)

    # Build and compile the discriminator
    self.discriminator = self.build_discriminator()
    self.discriminator.compile(loss=['binary_crossentropy'],
        optimizer=optimizer,
        metrics=['accuracy'])

    # Build the generator
    self.generator = self.build_generator()

    # The generator takes noise and the target label as input
    # and generates the corresponding digit of that label
    noise = Input(shape=(self.latent_dim,))
    label = Input(shape=(1,))
    img = self.generator([noise, label])

    # For the combined model we will only train the generator
    self.discriminator.trainable = False

    # The discriminator takes generated image as input and determines validity
    # and the label of that image
    valid = self.discriminator([img, label])

    # The combined model  (stacked generator and discriminator)
    # Trains generator to fool discriminator
    self.combined = Model([noise, label], valid)
    self.combined.compile(loss=['binary_crossentropy'],
        optimizer=optimizer)

    def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='float32')
        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))

        model_input = multiply([noise, label_embedding])
        img = model(model_input)

        return Model([noise, label], img)

    def build_discriminator(self):

        model = Sequential()

        model.add(Dense(512, input_dim=np.prod(self.img_shape)))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        label = Input(shape=(1,), dtype='float32')

        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
        flat_img = Flatten()(img)

       model_input = multiply([flat_img, label_embedding])

       validity = model(model_input)

       return Model([img, label], validity)

    def train(self, epochs, batch_size=128, sample_interval=50):
        d_loss_prog = []
        g_loss_prog = []

       ######### 使用データの変更#############
        with open('./sam.csv', 'r') as f:
            reader = csv.reader(f)
            data_len = 1000
            data_num = 1089
            y_train = []
            x_train = []
            for row in reader:
                y_train_value = row[-1]
                y_train.append(y_train_value)
                x_train_value = row[0:data_len]
                x_train.append(x_train_value)
            x_train = np.array(x_train)
            x_train = x_train.reshape(data_num,1,data_len)
            y_train = np.array(y_train)
            y_train = y_train.reshape(-1, 1)
            x_train = x_train.astype(np.float32)
            x_mean = x_train.mean()
            x_train2 = x_train - x_mean
            x_std = x_train2.std()
            X_train = x_train2 / x_std**
            X_train = np.expand_dims(X_train, axis=3)

         ############# ここまで変更 ###################

    # Load the dataset
    #(X_train, y_train), (_, _) = mnist.load_data()
    #
    # # Configure input
    # #X_train = (X_train.astype(np.float32) - 127.5) / 127.5
    # X_train = np.expand_dims(X_train, axis=3)
    # y_train = y_train.reshape(-1, 1)

    # Adversarial ground truths
    valid = np.ones((batch_size, 1))
    fake = np.zeros((batch_size, 1))
    half_batch = int(batch_size/2)
    for epoch in range(epochs):

        # ---------------------
        #  Train Discriminator
        # ---------------------

        # Select a random half batch of images
        idx = np.random.randint(1, X_train.shape[0]+1, half_batch)

        imgs, labels = X_train[idx], y_train[idx] 

        # Sample noise as generator input
        noise = np.random.normal(0, 1, (batch_size, 100))

        # Generate a half batch of new images
        gen_imgs = self.generator.predict([noise, labels])

        # Train the discriminator
        d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
        d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

        # ---------------------
        #  Train Generator
        # ---------------------

        # Condition on labels
        sampled_labels = np.random.randint(0, 14, batch_size).reshape(-1, 1) ##10から14に変更##
        # Train the generator
        g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)

        # Plot the progress


        if epoch % sample_interval == 0:
            print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
            d_loss_prog.append(d_loss)
            g_loss_prog.append(g_loss)
            plt.plot(d_loss_prog)
            plt.plot(g_loss_prog)
            plt.pause(0.01)
            self.generator.save_weights('generator', overwrite=True)
            self.discriminator.save_weights('discriminator', overwrite=True)


    def generate_images(self, label):
        for i in range(2):
            self.generator.load_weights('./generator')
            noise = np.random.normal(0, 1, (1, self.latent_dim))
            gen_imgs = self.generator.predict([noise, np.array(label).reshape(-1,1)])
            np.savetxt('outp.csv', gen_imgs[0,:,:,0], delimiter=',')


if __name__ == '__main__':
    epochs = 5000
    batch_size = 32
    sample_interval =50

    cgan = CGAN(epochs, batch_size, sample_interval)
    cgan.train(epochs, batch_size, sample_interval)
   #cgan.generate_images(1) # generate images of a specific class

学習曲線