pysparkで下記のようなエラーが発生しています.
stringJSONRDD = sc.parallelize(("""
{ "id": "123",
"name": "Katie",
"age": 19,
"eyeColor": "brown"
}""",
"""{
"id": "234",
"name": "Michael",
"age": 22,
"eyeColor": "green"
}""",
"""{
"id": "345",
"name": "Simone",
"age": 23,
"eyeColor": "blue"
}""")
)
を行い,RDDを定義した後
swimmersJSON = spark.read.json(stringJSONRDD)
でDataFrameに変換した後.
spark.sql("select*from swimmersJSON").collect()
を実行すると
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
~/Spark/python/pyspark/sql/utils.py in deco(*a, **kw)
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
~/Spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
Py4JJavaError: An error occurred while calling o23.sql.
: org.apache.spark.sql.AnalysisException: Table or view not found: swimmersJSON; line 1 pos 12
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:649)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:601)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:631)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:624)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:61)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:59)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:59)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:59)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:624)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:570)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:69)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:67)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:50)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:632)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
During handling of the above exception, another exception occurred:
AnalysisException Traceback (most recent call last)
<ipython-input-8-6317c6e34aea> in <module>()
----> 1 spark.sql("select*from swimmersJSON").collect()
~/Spark/python/pyspark/sql/session.py in sql(self, sqlQuery)
601 [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
602 """
--> 603 return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped)
604
605 @since(2.0)
~/Spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
~/Spark/python/pyspark/sql/utils.py in deco(*a, **kw)
67 e.java_exception.getStackTrace()))
68 if s.startswith('org.apache.spark.sql.AnalysisException: '):
---> 69 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
70 if s.startswith('org.apache.spark.sql.catalyst.analysis'):
71 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
AnalysisException: 'Table or view not found: swimmersJSON; line 1 pos 12'
といったエラーが出ます.どうすればよろしいでしょうか?
なお
spark.sql("show databases").show
では
<bound method DataFrame.show of DataFrame[databaseName: string]>
と処理はされている様子です.
./build/mvn -DskipTests clean package
のテストや
./python/run-testは全部通っています.
Python 3.6.2 :: Anaconda, Inc.
(3-5.0.0)
java version "1.8.0_151"
spark-2.2.1