pysparkで下記のようなエラーが発生しています.

stringJSONRDD = sc.parallelize((""" 
{ "id": "123",
    "name": "Katie",
    "age": 19,
    "eyeColor": "brown"
  }""",
   """{
    "id": "234",
    "name": "Michael",
    "age": 22,
    "eyeColor": "green"
  }""", 
  """{
    "id": "345",
    "name": "Simone",
    "age": 23,
    "eyeColor": "blue"
  }""")
)

を行い,RDDを定義した後

swimmersJSON = spark.read.json(stringJSONRDD)

でDataFrameに変換した後.

spark.sql("select*from swimmersJSON").collect()

を実行すると

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
~/Spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:

~/Spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    318                     "An error occurred while calling {0}{1}{2}.\n".
--> 319                     format(target_id, ".", name), value)
    320             else:

Py4JJavaError: An error occurred while calling o23.sql.
: org.apache.spark.sql.AnalysisException: Table or view not found: swimmersJSON; line 1 pos 12
    at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:649)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:601)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:631)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:624)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
    at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:61)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:59)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:59)
    at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
    at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
    at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:59)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:624)
    at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:570)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
    at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
    at scala.collection.immutable.List.foldLeft(List.scala:84)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
    at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:69)
    at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:67)
    at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:50)
    at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67)
    at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:632)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)


During handling of the above exception, another exception occurred:

AnalysisException                         Traceback (most recent call last)
<ipython-input-8-6317c6e34aea> in <module>()
----> 1 spark.sql("select*from swimmersJSON").collect()

~/Spark/python/pyspark/sql/session.py in sql(self, sqlQuery)
    601         [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
    602         """
--> 603         return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped)
    604 
    605     @since(2.0)

~/Spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1131         answer = self.gateway_client.send_command(command)
   1132         return_value = get_return_value(
-> 1133             answer, self.gateway_client, self.target_id, self.name)
   1134 
   1135         for temp_arg in temp_args:

~/Spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     67                                              e.java_exception.getStackTrace()))
     68             if s.startswith('org.apache.spark.sql.AnalysisException: '):
---> 69                 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
     70             if s.startswith('org.apache.spark.sql.catalyst.analysis'):
     71                 raise AnalysisException(s.split(': ', 1)[1], stackTrace)

AnalysisException: 'Table or view not found: swimmersJSON; line 1 pos 12'

といったエラーが出ます.どうすればよろしいでしょうか?
なお

spark.sql("show databases").show

では

<bound method DataFrame.show of DataFrame[databaseName: string]>

と処理はされている様子です.

./build/mvn -DskipTests clean package
のテストや
./python/run-testは全部通っています.

Python 3.6.2 :: Anaconda, Inc.
(3-5.0.0)
java version "1.8.0_151"
spark-2.2.1